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Background
 
Problem Statement
Assume one has a database of images taken throughout a modern city, containing pictures 
of shops, restaurants, townhouses, skyscrapers, or anything else that one photographs 
from the street. Also assume that between images of the same place, point 
correspondences have been iteratively computed and the 3D locations of both the 
cameras and the locations in their photographs have been estimated.  
 
Given a new input image, not already in the database, determine if the location 
photographed is already visible within any of the existing images. Given a match, 
determine not only where the camera was when the photograph was taken, but also where 
everything photographed by the camera is located in 3D space. 
  
For a description and understanding of the intended application of the engine described in 
this report, please see the main project report description: “Street View for the People.”
 
Phase One: 
 
For the first phase of the engine, the problem begins at the genesis of the database, with 
the very first pair of images.  

1. Given the initial two images, I1 and I2, determine if they are (partially) viewing 
the same physical location.  

2. If the views of the two photographs are overlapping, establish a set of 
correspondences between points in one image and points in the other, that are 
believed to be of the same physical location.   

3. Given the set of correspondences, estimate the relative locations of both the 
cameras and the points in 3D space.  

 
Algorithm Overview Outline:
 
In order to estimate the 3D locations of both the cameras and the objects in their 
overlapping views, a series of computations must occur: 

1. Feature Points that are easily distinguishable across multiple views are located in 
both images.  

2. Correspondences between pairs of images, using SIFT features, are established.  
3. The “Fundamental Matrix” is calculated from the initial correspondences, and 

possibly used to re-calculate correspondences.  
4. The Fundamental Matrix is upgraded to the “Essential matrix”, both by estimating 

the camera’s internal parameters and applying mathematical constraints.  
5. The Essential Matrix is used to estimate the “Camera Matrices,” describing both 

the internal configuration (focal length, pixel aspect ratio, optical center, etc) and 
external position (X,Y,Z) and orientation (pitch, roll, yaw) of the two cameras.  

6. 3D locations of all 2D point correspondences are calculated. 
 

http://docs.google.com/View?docid=ah4n93hw6jvb_149gnbq56ht


Feature Points - SIFT: 
 
Description: 
 
In order to establish correspondences between images indicating that a pixel in one image 
is of the same physical real-world 3D point as that of a pixel in another image, it is 
necessary to select points in an image that are both distinguishable between images and 
describable in a manner that does not significantly change with viewpoint.  
 
The current engine uses SIFT (Scale-Invariant Feature Transform) for choosing and 
matching points between images. SIFT is an algorithm for first selecting, to within sub-
pixel accuracy, and then describing distinct regions of an image in a representation (or 
“feature space”) that is invariant to both changes in lighting, scale, and some forms of 
rotational motion. SIFT has proven itself as a robust descriptor for matching points 
between images. By default, SIFT features are 128 element vectors describing the relative 
“edginess” of the region directly around the feature, across several resolutions.  
 

 
Figure Displaying SIFT features found in an image 

 
Drawbacks:
 
While SIFT is often quite successful at providing a sufficient number of correct point 
correspondences to estimate the Fundamental matrix, it suffers from a few major 
drawbacks. First, SIFT features are highly variant to rotation, especially when viewing 
largely planar surfaces with a single orientation. Second, because SIFT starts by choosing  
points that are most often corners (at some resolution), it tends to repeatedly choose sets 
of points on building facades corresponding to window corners. Further, since multiple 
sets of identically appearing SIFT features appear in straight rows across the facade, false 
point correspondences between images can be established that perfectly satisfy the 
epipolar constraint of the Fundamental matrix, one of the primary tools in detecting false 
correspondences because the matrix constrains the possible region of correspondence 
between a point in one image to lie somewhere along a line in the other image.  



 
 
Implementation: 
 
For the engine, several implementations of SIFT were evaluated. I eventually selected an 
implementation written by Robert Hess of Oregon State [Hess, R.]. His implementation 
had several benefits: 

• open source and highly configurable.  
• utilized OpenCV for some image processing functions, implying increased 

performance for those operations.  
• provided support for efficiently matching sets of SIFT features using a KD-tree 
• provided support for saving and loading SIFT features to disk, allowing the ability 

to cache calculated SIFT features instead of recomputing on every run.  
 
As is described in the following section, an additional matching algorithm, based upon 
the provided SIFT matching implementation, was implemented for this project, allowing  
the usage of the Fundamental matrix in constraining possible point correspondences.  

 
 

 
 
 
 
 
Establishing Correspondences: 
 
Given a set of SIFT descriptors for two images, I1 and I2, first construct a KD-Tree for 
the features of I1. Then, for each SIFT feature in I2, f2,n, find the two closest matches in I1. 
Features are compared using the Euclidian distance between their 128 element vectors. A 
point correspondence is accepted, if the first best match (f2,m) is “sufficiently” better than 
the next best match (f2,n): 
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After iterating through all features of I1, one should be left with a set of point 
correspondences between I1 and I2.  
 
It should be noted that at no time is the actual distance metric in SIFT space between 
matching points in the two images considered, only the relative distance between the first 
and second best match. This is an important attribute, because it implies that the 
algorithm can still return a significant number of point correspondences between 
completely non-overlapping regions, and worse, between significantly different feature 
points, so long as the relative difference with the next best match is large.  
 



Iterative Correspondence Establishment Given Constraints:  
 
For the first iteration of finding point correspondences, only SIFT features are used. Once 
an initial set of point correspondences is established, it is possible to estimate the relative 
poisitions of the cameras and thereby restrict the locations of their corresponding points.  
 
The initial SIFT library’s correspondence matching algorithm was extended such that 
when given a matrix which described the relative locations of the cameras based on the 
initial point correspondences, it then enforced the constraint when re-selecting possible 
point correspondences . Instead of examining only the first two matches, a larger subset 
of possible correspondences are returned, and all points which too strongly violate the 
view constraint are eliminated as possibilities.  
 
When finding the top 25 best possible matches in I2 for a point in I1, it was most often the 
case that only a single point among all 25 satisfied the view constraint. For example, in 
the image pair in Figure 1, initially only 629 point correspondences were found, of which 
only 598 were valid. Upon the second iteration of establishing point correspondences, 
taking into account the Fundamental matrix, 1923 point correspondences were found, of 
which 1431 were valid. In addition, of the 1923 correspondences, 76% only found one 
match which satisfied the epipolar constraint, bypassing the need to compare relative 
distance ratios with the next best match.   
 
The next section covers in detail the mathematics of the view constraints that can be 
estimated from a set of point correspondences.  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure: Example Image Pair 
 

 
 
 



Epipolar Geometry:  
 
Fundamental Matrix Estimation: 
 
At this stage one has a set of point correspondences between I1 and I2: (x, x’), where x is 
a pixel coordinate in I1, and x’ a pixel coordinate in I2. The next step is to calculate an 
entity coined the “Fundamental Matrix”, F, a rank 2 matrix of size 3x3 which is defined 
by 8 out of the 9 parameters (the ninth always normalized to 1). F defines the possible 
location of a corresponding point between one image to lie along a line in another image. 
The fundamental matrix also constrains the relative position and orientation of the two 
cameras, up to a perspective distortion. 
 
The defining equation of the Fundamental Matrix is given by:  
 

x'T F x = 0, where x and x’ are corresponding points in I1 and I2, respectively.  
 

The Fundamental matrix essentially is the epipolar constraint, meaning that given F, and 
a point correspondence x in I1, it is possible to constrain the possible location of the 
corresponding point x’ in I2 to a line (“epipolar line”) in I1. The line (l’) in I2 is calculated 
by 
 

l' = F x.  
 
The reprojection error is a commonly used error measurement for estimating how well a 
given F relates supposed point correspondences, and how well a possible choice of point 
correspondences adhere to the epipolar constraint of F. The reprojection error is defined 
as the distance between the actual point correspondence x’ in I2 and the epipolar line in I2 
that is determined by F and x. Going back to the previous section, the SIFT matching 
algorithm was extended to filter point correspondences that had large reprojection errors.  
 
There exist many algorithms for estimating the fundamental matrix, each with varying 
requirements for the number of point correspondences, complexity, and robustness to 
noise.  
 
8 Point Algorithm: 
 
The 8 point algorithm is the simplest method of estimating the Fundamental Matrix. As 
the name suggests, the algorithm requires at least 8 points, though if more are available, 
they can be used to find a minimum least squared error of F.  
 
The 8 point algorithm involves directly estimating the best 3x3 matrix satisfying x’T F x 
= 0 for a set of 8 or more points, the details for which are described in Multiple View 
Geometry. Note that the estimate of F found with the 8 point algorithm is not guaranteed 
to be of rank 2.  
 
 



7 Point Algorithm: 
The 7 point algorithm builds upon the 8-point algorithm, also taking into account an 
additional  constraint beyond x’ F x = 0, namely that: 

 
det | F | = 1 

 
Details of the computation are left to Multiple View Geometry, and OpenCV provides an 
implementation. The important aspect of the algorithm is that the additional constraint 
yields a polynomial equation that when solved can yield either one or three possible 
values for F. Hartley also notes that the 7 point algorithm has the additional advantage of 
being rank 2. It also is not as sensitive to normalization.  
 
RANSAC: 
 
The RANSAC (Random Sample Consensus) method typically relies upon the 7 point 
method to calculate F for randomly chosen subsets of 7 points from the full set of point 
correspondences between I1 and I2. For each estimate of F, the reprojection error is 
calculated for all points to provide an estimate both of good an estimate the current F may 
be, and to filter out incorrect point correspondences that do not agree with the estimate of 
F.  
 
Upon examination of the source code (cvfundamn.cpp), the OpenCV implementation of 
RANSAC is implemented as follows. On each iteration, 7 points are randomly chosen 
and used to estimate F using the 7-point algorithm. Next, for either the one or three 
possible F’s returned by the 7-point algorithm, the reprojection error between the point 
and the epipolar line is calculated for both and x and x’. The point correspondences are 
then separated into outliers and inliers according to a user provided threshold, where both 
x and x’ must have a reprojection error below the threshold to be classified as inliers.  
 
Finally the implementation then checks whether the current estimate of F, as measured by 
the number of inliers, is greater than the best estimate’s number of inliers seen so far. If it 
is larger, the current estimate becomes the new estimate.  
 
The iteration loop of sampling points and estimating F terminates either when a 
maximum number of iterations, hard coded within OpenCV to 1000, or after a probability 
that the current best estimate of F is correct, given the ratio of inliers to outliers, surpasses 
a user provided confidence interval.  
 
Lastly, the implementation has the optional ability to apply the overconstrained 8-point 
algorithm upon all of the inlier correspondences to calculate the final best estimate of F.  
 
To summarize, the OpenCV implementation of RANSAC for estimating the Fundamental 
matrix has two input parameters in addition to the set of point correspondences: 1) the 
inlier/outlier threshold for the reprojection error, and 2) a percentage likelihood that the 
estimate is correct.  
 



The RANSAC method of computing F is used in the current engine. When applying the 
iterative estimation method, whereby correspondencess are found in order to estimate F, 
which is then used to find even better point correspondences in order to better estimate F, 
the inlier/outlier threshold is used. Initially it is fairly large, and then is decreased once an 
initial estimate can be used to better filter out inliers.  
 
 
Essential Matrix: 
 
After estimating the Fundamental Matrix, the next step is to upgrade it to the Essential 
Matrix.  
 
Properties of the Essential Matrix  
 
The Essential Matrix, like the Fundamental Matrix, better relates the relative positions of 
two cameras and their possible correspondence by mapping a point in I1to a line in I2 
along which the corresponding point must be. This relation is defined by:  
 

x'T E x = 0 
 
Unlike the Fundamental Matrix, however, the Essential Matrix encapsulates the known 
internal parameters of the camera. The essential and fundamental matrices are related by: 
 

FKKE T'=  
 

Where K’ and K are the camera matrices for I2 and I1 respectively.  
 
Like the fundamental matrix, the essential matrix is also of rank <= 2, however unlike the 
fundamental matrix, the essential matrix has equal singular values (σ), such that: 

SVD(E) = U S VT, where S = diag(σ, σ, 0). 
 
Lastly, note that unlike the fundamental matrix, which known up to an arbitrary 
perspective distortion, the essential matrix is known up to an arbitrary scale factor. As 
such, it is common to normalize the eigenvalue matrix to one, suchthat S = diag(1,1,0).  
 
From Fundamental to Essential: 
 
The most straightforward means of upgrading the Fundamental matrix is to assume or 
learn through calibration the internal parameters of the camera. Common assumptions on 
the internal parameters include zero pixel skew, square pixels, and camera center located 
within the optical center. For the Street View project, which initially intends to only use 
the iPhone cameras, it is assumed that the focus will also be roughly constant between 
pictures.  
 
 
 



Camera Calibration: 
 
In order to establish ground truth, assess the validity of the assumptions, and obtain lens 
distortion coefficients to correct for distortion in the images, the digital camera used for 
most photos in the project was calibrated using the Matlab Calibration Toolbox.  
 
The calibration procedure reported the following internal parameters for a digital camera 
in “Outdoor” mode at a resolution of 2304x1728: 

• Focal Length = 2333.62 +/- 7.82, 2331.13 +/- 7.85 
• Optical Center = (1187.5 +/- 9.67, 816.08 +/- 13.55) 
• Zero Skew 
• Lens Distortion Coefficients: (-0.22526, 0.18916, 0.0012, 0.0013) 

 
Note that given the resolution of 2304x1726, the expected optical center was (1152, 863), 
compared to the calibration derived value of (1187.5, 816.08).   
 
Auto Calibration: 
 
Auto Calibration is the process of estimating the internal parameters as part of the 
processing of input images, as opposed to pre calibrating with known calibration patterns 
before hand. An exhaustive literature of methods for auto calibration exists, differing 
primarily in the number of known constraints once may choose to assume beforehand.  
 
One particular auto calibration method examined for the engine was the estimation of the 
focal length assuming the same focal length for both cameras, along with, zero skew, 
square pixels, and known optical center.  
 
For details of the derivation, the reader is again referred to Multiple View Geometry, 
chapter 19. In summary, it is possible to apply the Kruppa equations (a highly non-linear 
set of equations relating the pair of images and their point correspondences), in order to 
derive the following relationship:  
 
Let w = diag(a2, a2, 1), and the SVD(F) = U diag(σ1, σ2, 0) VT, for the case where ‘a’ is 
the focal length (measured in pixels) for both cameras. Given both the Fundamental 
matrix and its SVD, the following constraint holds: 
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Where ui is the ith column of U, and vi the ith column of V. One can then either solve for 
the quadratic equation for a2 explicitly, or else iteratively estimate the value of a2 which 
best enforces any of the two above.  
 
The results of the above auto calibration method were tested on several image pairs. 
Often the results provided fairly decent results, within 5-10% of their true value. The 



results varied heavily, however, on the specific input images and set of point 
correspondences. Lens distortion especially seemed to play a significant negative role. 
 
Given the significant impact that lens distortion can have on all algorithms described in 
this report, it was decided necessary to calibrate and pre-estimate the lens distortion of 
the camera. The decision is made for the initial development phase, knowing that 
methods of estimating the lens distortion directly from images exist.  
 
 
Enforcing Rank and Singular Value Constraints 
 
After multiplying F by the camera matrices for I1 and I2, the final step is to enforce the 
equal singular . Assuming the SVD(K’T F K) = U diag(σ1, σ2,0) VT

, the final step is to 
enforce the constraint that the two singular values of E should be equal, thus replacing the 
diagonal singular value matrix with diag(σ, σ,0), where 
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Camera Matrices Extraction:  
 
Given the Essential Matrix, E, it is now possible to extract the camera matrices. The 
camera matrix, Pi, for Image Ii,  which are of the form Pi = K[ R | t ], where R is the 
rotation matrix, and t the translation vector, mapping the coordinate system of the ith 
camera into a global reference frame. Note that t is known only up to an arbitrary scale 
factor, and as such, is by convention normalized such that || t || = 1.  
 
The first camera can be chosen as the world reference frame: P1 = [ I | 0 ].  
 
The second camera matrix can then be extracted via the following factorization.  
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Lastly, it is possible to define P2, given P1 = [ I | 0 ] as: 
 
P2 = [UWVT | +u3] or [UWVT | -u3] or [UWTVT | +u3] or [UWTVT | -u3]. 
 



Finally to choose which of the four possible solutions is correct, one must test a single 
point, by triangulating its location (see next section) in 3D space using P1 and P2, for all 
four possibilities, and selecting the P2 such that the 3D point is in front of both cameras, 
meaning the Z coordinate is positive in both P1 and P2’s reference frames.  
 
 
3D Triangulation of Correspondences: 
 
Once P1and P2 are known, the last step is to estimate the 3D location of each 
correspondence.  
 
For a given point correspondence (x, x’) between two images (I1, I2), both 2D image 
points of the same 3D point X = (x,y,z), the entities are related by: 
 

x = P1X, and x’ = P2X 
 

Manipulating the equations, it is possible to form a system of equations:  
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One method of solving for X subject to AX=0 is to apply the Direct Linear Transform 
method described by Hartley and Zisserman, utilizing the additional constraint that || X || 
= 1, which is allowed given that E and therefore P and X are all known up to an arbitrary 
scale.  
 
To solve for X, one takes the SVD(A) = U Σ VT

, and X is equal to the last column of V.  
 
This method has been implemented on a per point, and works to some degree. 
Unfortunately, in using the homogenous DLT method, all 3D points are individually 
normalized such that || X || = 1. The result is that the relative scales of points are not yet 
correct, and an effect similar to a lens distortion occurs in the estimated 3D locations, 
whereby the relative scales of points are related || x || as measured from the optical center 
of the frame.  
 
One desirable aspect of the above formulation is that it immediately generalizes for N 
views of the same point, where each view contributes two more rows of A.  
 



Results 
 



 
 
Figure: Triangulated 3D Point cloud viewed head on, with doorway in center.  



 
Triangulated 3D Point Cloud, Viewed from the Left side. Note the multiple 
clear planar regions conforming to the different wall depths in the image 

pairs. Also note the cluster of points in the bottom right corresponding to the 
cars in front of the buildings.  



 
Triangulated 3D point cloud viewed from the bottom lookup. Note the 

circular point clouds near the top, one per car. Also note the separate planes 
mapping to the different depths of the wall. 



Future Algorithmic Work: 
 
The first phase of the multiple view engine is almost done. For some point cases, it 
is able to construct a 3D point cloud which accurately captures the 3D structure of 
the scene. Unfortunately unknown degenerate cases also occur, perhaps related to 
the use of the homogenous DLT method for triangulating 3D points. The 
particular method assumes that fourth homogenous coordinate of X, w, is not zero. 
In the case of nearly pure translational motion, however, w may be close to zero, 
resulting in instability. The first step going forward is to implement a robust method of 
triangulation which can handle degenerate conditions.  
 
After robust triangulation, it is then necessary to expand the engine beyond pairs of 
images and into sets. Several experiments have already been run, in which a set of 20 
images taken at differing rotations and translations while on the sidewalk, photographing 
the opposing building façade. Then each image is taken, SIFT features extracted, and 
correspondence matching run between all other images. Following Phototourism authors’ 
lead, the quality of the match is then taken strictly as the number of the SIFT 
correspondences. The simple method of choosing the largest number of matches correctly 
matched overlapping views in every single case, despite photographs of an extremely 
repetitive building façade that was difficult even for a human to locate by.  
 
Once multiple views and estimates of cameras are integrated into a single global 
reference frame, global optimizations relying on bundle adjustment will be added, 
simultaneously refining both the camera and point locations. Several opensource libraries 
for performing bundle adjustment have been located, including the library utilized by 
Phototourism.  
 
Additional work will likely also be required on how to best choose and match feature 
correspondences across an increasingly vast set of images. It is believed, and confirmed 
by recent publications, that SIFT features alone cannot scale in distinguish an extremely 
large set of scenes, especially when the majority are composed of extremely similar 
corner detectors along doors and windows. I am personally very interested in examining 
methods of detecting such repetitive structures, not only to avoid picking individual SIFT 
features from among them, but also in the possibility of grouping them into a higher level 
Feature of Features which may prove more robust at disambiguating images amongst a 
large dataset. 
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