
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Synthesizing Virtual Satellite Views 
of Highway Traffic 

 
David Lariviere (dal2103@columbia.edu) 

Final Project for Automatic Visual Surveillance, Spring 2008 
Taught by Drs Andrew Senior, Rogerio Feris, and Ying-Li Tian.  

 
 
 
 
 
 
 
 
 
 
 
 

(Top Left) Input Frame. (Top Right) Background Model. (Middle Left) Foreground. (Middle Right) Estimated Vehicle Locations and 
Orientations. (Bottom Center) Synthesized Virtual Satellite View of Highway Traffic. 



Table of Contents 
Introduction......................................................................................................................... 3 
Notation............................................................................................................................... 4 
Mathematical Background:................................................................................................. 5 

General Case: Plane to Plane Mapping via Homography............................................... 5 
Computation of Homography: .................................................................................... 6 
Homography Results:.................................................................................................. 7 

Mathematical Requirements for View Synthesis............................................................ 9 
Required Information from C1: ................................................................................... 9 
Orthographic Projection:........................................................................................... 11 

Overview of Video Processing Algorithms: ..................................................................... 13 
Video Capture: .............................................................................................................. 14 

Volume of Recorded Video ...................................................................................... 14 
Background-Foreground Segmentation:....................................................................... 15 

Background............................................................................................................... 15 
Foreground................................................................................................................ 15 

Connected Components Object Segmentation: ............................................................ 16 
Foreground Filtering Enhancement .......................................................................... 16 

Vehicle Localization ..................................................................................................... 17 
Identifying Cars in the Side View:............................................................................ 18 
Obtaining Constraints from Objects in C1: ............................................................... 18 

Rendering Overhead View............................................................................................ 19 
Drawing Objects In the Image .................................................................................. 20 
Estimating Object Color: .......................................................................................... 21 

Implementation Details:.................................................................................................... 22 
Software Design............................................................................................................ 22 
Development Environment: .......................................................................................... 22 
Software Libraries:........................................................................................................ 22 

Video Input ............................................................................................................... 22 
Conclusion: ....................................................................................................................... 24 

  



Introduction 
 
The goal of my final project was to create a software program for creating synthetic 
overhead views, as would be seen from a satellite, of traffic moving on a highway, given 
surveillance footage taken from a nearby building.  
 
Visually speaking, given a video camera with a view like Figure 1a, synthesize a virtual 
“overhead” view of the same scene, as it would appear from Figure 1b.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 (a)                                    (b) 
Figure 1: (a) Input "Side" View, (b) Overhead View 

 
 



Notation 
 
C1: Used to describe side view, including the focal plane upon which the image is 
projected.  
C2: Used to describe the overhead view, including the focal plane upon which the image 
is projected.  
xs: a 2D point expressed in pixel coordinates of C1.  
xo: a 2D point expressed in pixel coordinates of C2.  
GP: The Ground Plane, in 3D space, of which C1 and C2 share at least partially 
overlapping views.  
H: The homography (projective transformation) that maps points from C1 to C2, for all 
points on GP.  
BBi: The i  3D box which rests upon Gth

P.  
View: Planar projection of either 2D or 3D points onto a 2D surface.  

 



Mathematical Background:  

General Case: Plane to Plane Mapping via Homography 
 
As explained in the introduction, the intent is to map pixels in one image to pixels in 
another. More specifically, we wish to map between two distinct views of a common 
ground plane, GP, as observed and projected onto the focal planes of two separate 
cameras, C1, and C2.  
 
For the specific case where all points are known to be coplanar in 3D space, it is possible 
to calculate a warping which maps the location of where each point is seen in one image 
to where it would be seen in another. Note that this is only possible in the case where all 
3D points are coplanar.  For example, given Figure 2, there exists a homography, H,  
which maps coplanar points between two Planes. Note, however, that if H maps on a 
plane GP, then the same H cannot, in general, also correctly map points not on GP.  
 
Assume one is given a set of at least four corresponding points, xs in the side view C1, 
and xo in the overhead view C2, such that each pair of points are of the same physical 
point in 3D space, X. If no exists at least four pairs, such that no three are collinear, then 
the relationship between any pair of points between the two views is determined, up to 
scale, by a homography: 
 

xo
T  × H  xs = 0  

 
(where ‘×’ is the vector cross product). 

 
In addition, given H and either xo or xs, it is possible to calculate the other point: 
 

xo = H xs 

 
H-1 xo = xs

 
 

The above pair of equations provides the means to calculate where a point in the second 
image will appear, given the location of the same 3D point in the first image.  

 
 
 
 
 

1Multiple View Geometry. Hartley and Zisserman.



 

 

 

 

 

 

 

 

 

 

B1 
B2 

Figure 2 View of a 3D scene which lies upon a Groundplane, as seen 
from both the side and overhead views, C1 and C2, respectively.  

Ground Plane

C2

 

Computation of Homography: 
 
There are many methods for calculating the homography, depending on the set of 
limitations imposed upon the relationship between the two views. In the case considered 
for the side to overhead view mapping of objects on the ground plane, at least 4 pairs of 
point correspondences between the side and overhead views are required, subject to the 
non-collinearity constraint mentioned.  
 
Note that the original intent of the project was to automatically compute H given a single 
view. It was eventually suggested to simply manually calculate the Homography, instead. 
 
This was a logical modification given the desire to create not an arbitrary bird’s eye of a 
ground plane, but instead warp all data to existing satellite photographs of the area under 
observation. In addition, the usage of satellite photos allows one to much better examine 
the quality of the mapping and vehicle localization.   
 
 
 
 
 
 
 
 
 

C1

X 

xo

xs



Homography Results: 
 
 Mapping Results between Side and Overhead Views: 
 
View Figure 3 shows a typical input frame, along with the corresponding points which 
were used in estimating the homography. Note that 4 rather than the minimum 5 points 
were used, leading to an overconstrained problem.  
 
 

View Figure 3 Example side view with point correspondences (shown as Bullseyes) mapped to 
overhead 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 (Top) Overhead View with point correspondences. (Bottom) Side View projectively warped 
to overhead view, via computed Homography. Vertical lines are used to show accuracy of the 

mapping.  



Mathematical Requirements for View Synthesis 
  

B1 B2 

C2C1

 
Figure 5 Another view (seen along X axis) of the 3D scene depected in Figure 2. Note how above, the 
projection of B2 from C1 back onto GP is much larger than B1, because B2 is further away form C1.  

 
 

Required Information from C1: 
 
The primary motivation in processing C1 in order to segment and extract objects is to 
collect sufficient information to correctly render each object as it would appear from 
above, given a view from the side.   
 
Figure 2 and Figure 5 depict a relatively simple 3D scene in which two cameras share 
overlapping views of two coplanar cubes of equal size. Both cubes are based upon the 
ground plane. As is depicted in figures, our intent, given the view from C1, is to 
synthesize an image approximating the view of C2.  
 
The fundamental problem, however, is that while a homography, H, is being used to map 
corresponding points on the ground plane, Gp, between C1 and C2, the objects in the scene 
are not actually completely within the ground plane (with z=0).  
 
 

x2’ x2

x1 x1’ 



Simple View Synthesis 
 
A naïve method of synthesizing a view from C2 is as follows:   

1. project the 3D scene onto C1, thereby creating the perspective view of the scene, 
as viewed by C1, under perspective distortion.  

2. project the image of C1 onto Gp, ignoring the 3D structure of the scene. 
3. Project the image of GP onto C2, forming the virtual view.  

 
One problem, as can be seen in the black lines projected onto C2 in Figure 5, is that while 
both squares are of equal size, the resulting synthesized view contains errors that are both 
significant and non-linear, The further from C1 an object is, the larger the distortion in its 
synthesized view projected onto C2. This effect can also be clearly seen the homography 
warping example in Figure 4.  
 

Object Constraints: 
 
As so far presented, the problem of generating correct views for C2 given objects 
projected onto C1 is an under constrained problem that cannot be solved. It is under 
constrained because while H may map points upon Gp from C1 to C2, the mapping is 
known only up to an arbitrary scale factor, which in general lacks absolute measurements 
of distance across the plane. In addition, without further constraints, it is impossible to 
know the 3D structure of B1 given only a single view. 
 
To constrain the problem sufficiently so that it may be solved, we make the assumption 
that the dimensions of B1, as observed from C2, is known a priori. Given such 
information, it is then possible to reverse the process previously described. For example, 
consider the 2D view presented in Figure 5 of the image of B1 projected onto C1. Without 
loss of generality, we will restrict the example to the case of 1D projection of 2D scene, 
where the same technique should hold in the 2D  3D space as well.  

1. Locate the point, x1, at which B1 intersects Gp, such that the point is transferred 
from C1 to a point x2 in C2, via H, (it will be correct, given x1 is within Gp). 

2. Given x2 and known object dimensions (in 1D, only a known width, w), compute 
x2’, where x2’ is equal to x2 + w.  

3. Now compute the corresponding point in C1, mapped from x2’, via H-1.  
4. Draw in C1 the line through x1 and x1’, which in the 1D case, draws the “object” 

such that when the image is warped to C2, the line will be of length w. 



 

Orthographic Projection: 
 

(a) (b) 
 

Figure 6 (a) depicts perspective projection in which the focal length is very large relative to the depth 
differences within the scene. (b) depicts orthographic projection in which the focal length is taken to 

infinity and rays become parallel. 
 
 
All previous discussions of projection have assumed strictly perspective projection. If one 
assumes a slightly weaker model under certain conditions of the relative view and scene, 
then it is possible to simplify the mapping. Note Figure 6(a) in which the focal length 
(distance between the camera image plane C2 and the focus point) is even larger than the 
distance between C2 and Gp. Further note that focal length is significantly larger than any 
depth variations within the objects on Gp. In the hypothetical case where the focal length 
is increased to infinity, the resulting projection is known is orthographic projection. So 
long as the relative distance between the top and bottom of an object (the relative “depth” 
of the object, relative to C2) is small, then the orthographic projection well models the 
perspective projection.  
 



 

Equivalence of Gp and C2 under Orthography: 
 
Modeling the projection of the scene from the ground plane to C2 under orthographic 
projection (orthography) has one additional very useful property for the specific situation 
being considered:  
 
If C2 is assumed to be parallel to GP, and if the projection of GP onto C2 is well 
approximated by orthographic projection, then the projection of the scene onto C2 is 
equivalent to the projection of the scene on GP. If C2 is equivalent to GP, then an object 
located anywhere on GP will appear the same in its projection in C2!  
 
The result is in stark contrast to the situation involving C1 which is not parallel to GP, in 
that the same object, depending on its location, can very dramatically in its projected size.  
 
The further implication is that given: 

1. a  corner point within C1 of an object on GP 
2. the object’s orientation relative to GP 
3. the object’s dimensions in C2 

 
it is possible to accurately reconstruct the scene viewed from C2, given a single view 
from C1 (see Figure 7).  
 
 
 
 

Figure 7 An overhead view well modeled by orthographic projection. Note how all cars throughout 
the image appear the same size. Given a single point on the ground plane, combined with known 
object orientation and width, it is possible to determine its projection within the view.  



 

Overview of Video Processing Algorithms: 
 
As outlined in Figure 8, the system consists of a chain of algorithms responsible for 
separating the image into foreground and background, grouping pixels of the foreground 
into objects, processing the properties of the objects, and then rendering each object as it 
would be seen from the overhead view, via the homography.  
 
 

 
Figure 8: System Overview 

Video Input 

Background-
Foreground 

Segmentation

Background Model Foreground Mask 

Gaussian Blurring 

Connected Components

Moments of Inertia 
Minimum Bounding 

Boxes

Rendering Objects 
from Overhead 

Pixel Processing 

Overhead View 

Correspondences 
Between C1 and C2

 



Video Capture: 
 
In the first step, video frames are individually captured, either from a pre-recorded movie 
file or captured live from an attached video camera over firewire. All pre-recorded video 
was captured utilizing a Sony DCR-HC21, optionally f to tape, and then capturing to a 
PC using either VLC or Adobe Premiere. In order to maintain maximum quality, all 
videos are initially captured and stored in the native DV format of the camera: 720x480 
with 4:2:0 YUV sampling at roughly 28 Mbits/sec. A .5x wide-angle lens was also 
acquired for the project in order to maximize the field of view.   
 
While many other methods were experimented with, it was found that in order to allow 
OpenCV’s HighGUI video input library to successfully read a movie, it was 
unfortunately necessary to save all videos as RAW interlaced 4:2:0 wrapped in an AVI 
container. Initially ffmpeg was used for all video conversion, but later mencoder was also 
required in order to rotate one test video sequence which was required sideways. In 
addition to repackaging, ffmpeg was also utilized to deinterlace some video test 
sequences, which led to a clear increase in quality, removing interlacing artifacts that 
were extremely noticeable both in input video and the resulting foreground mask.  
 
All recorded video was saved at either 720x480 or down sampled to 320x240, in order to 
increase performance, especially related to disk I/O.  
 
In addition to resizing recorded video files beforehand, input frames can also be resized 
after being read into the program, in order to reduce the computational load on all 
subsequent algorithms. Note that the homography and associated point correspondences 
are automatically updated with respect to rescaling factor.  
 
 

Volume of Recorded Video 
 During the life of the entire project countless hours of video footage were recorded under 
varying times of day, traffic patterns, illuminations, zooms, lenses, and weather. In total 
more than 150 GB of video were digitized. That said, only about 5 GB were used for the 
final stages of development.  



Background-Foreground Segmentation: 

Background 
Once a video frame is read into memory and optionally resized, the frame is then passed 
on to the main video processing loop. The first step in processing the actual contents of 
the video is to segment each frame between the background, the static elements of the 
scene, and the foreground, possibly moving or at least relatively new objects which 
should be rendered in the overhead view. An implementation of the Mixture of Gaussians 
BGS algorithm provided with OpenCV is used 2.  
 
The background model is iteratively updated as each new frame is processed. In order to 
first build a relatively stable background model before attempting to detect objects, at 
startup, the first several frames are processed by the BGFG module without being passed 
to subsequent models. With the proper framerate and learning update parameters, a 
proper background is quickly learnt (see Figure 9).  
 

Foreground 
Once an initial estimate of the background is calculated, it is then possible to calculate a 
foreground mask, marking areas of the current input frame whose pixel values differ from 
the background model above a preset threshold. The foreground mask, while often quite 
noisy, is essential in isolating potential objects of interest. In the mixture of Gaussian 
implementation provided in OpenCV, all pixels in the foreground are strictly segmented 
via the provided threshold into either foreground (1.0) or background (0.0), with no 
probability values in between.  

 

 
Figure 9 (Top) Example Input Frame; (Bottom Left) Background Model. (Bottom Right) 

Foreground Mask for current frame given background model. 



Connected Components Object Segmentation: 
 
The foreground mask is next fed into another algorithm responsible for grouping 
connected regions of foreground pixels into sets. OpenCV surprisingly does not directly 
include a connected components segmentation implementation. The program therefore 
used cvBlobsLib, an opensource implementation compatible with OpenCV. 3

 
cvBlobsLib is intended to operate on grayscale images, with a threshold parameter 
provided by the user to first apply binary segmentation, after which object segmentation 
is run on pixels above the threshold. The author of the implement mentions that the 
algorithm implemented (may) have been based upon 4

 

Foreground Filtering Enhancement 
 
It was often the case that the foreground masks were extremely noisy, especially around 
edges. One simple technique introduced during development to mitigate such artifacts 
was to apply a Gaussian blurring filter to the foreground mask before running connected 
components. The size of the blurring kernel and the threshold value for binary 
segmentation can be used to control the extent to which objects are shrunk or grown. This 
method was especially helpful in preventing separate objects that were barely touching 
from being segmented into a single connected component.  
 
A strictly horizontal blur kernel was also manually constructed and tested in an attempt to 
mitigate a specific artifact. Note first that the camera was always positioned such that its 
Y-axis was perpendicular to the surface of the earth, meaning that thin cylindrical rods 
normal to the ground plane would appear as vertical lines in the side views.  It was often 
the case that such thin vertical lines from poles, street signs, and lights would obstruct 
views of objects, splitting vehicles in two with their two connected components separated 
by only a few pixels. Experiments using linear scan-line blur kernels were also carried 
out. The method, while sometimes useful, did not demonstrate a noticeable improvement 
in quality (avoiding vertical blurring) as compared to the Gaussian blur kernel.  
 



Vehicle Localization 
 
Once the foreground has been segmented into separate objects, each object, containing a 
set of pixels, is then processed individually in order to estimate various properties: 
centroid (center of mass), orientation (axis of largest momentum), minimum oriented 
bounding box, average color, location on ground plane of side view, corresponding 
location in overhead view. The end result of vehicle localization within C1 is shown in 
Figure 10. 
 
 
 

 
Figure 10 Object Segmented Image with Car Locations. To generate the image above, first the 

original foreground mask of each object is filled with a random color. Next one of the techniques is 
used to estimate the most likely location and orientation of a car. Lastly the car is drawn, either as an 
oriented ellipsoid, or oriented rectangle at the proper size such that when the full image is warped to 

C2, cars are of the proper size.  

 



Identifying Cars in the Side View:  
 
In order to acquire the constraints related to object sizes in GP and therefore C2, it is 
possible to rely on satellite photographs which are relatively well modeled under 
orthography. Then, one can measure a vehicle in pixel coordinates to obtain the relative 
size of an average sedan-category car when viewed from C2 upon GP. 
 
 

Obtaining Constraints from Objects in C1: 
 
As previously described in the mathematical section on, the final step in generating a 
synthetic view of C2 given C1 is to derive the object location (on GP) and orientation. In 
the implementation of the software, it is assumed that all vehicles have roughly the same 
area as viewed from above. Therefore the problem becomes one of locating a known 
point on the object in C1 that is on GP

 and on calculating the object’s orientation.  
 
Several methods were experimented for estimating a known point of the object that is 
known to be on GP, a description of two of which follows.  
 

Moments of Inertia 
 
One method of estimating both a known point on GP

 and the object’s orientation was to 
utilize the moments of inertia.  
 

Center of Mass: 
To locate a known point, one can utilize the first moment of inertia, also known as the 
center of mass of the object. Note that in the case of equally weighted points, the center 
of mass is equivalent to the average location among all of the object’s points. If the 
Gaussian blurring technique is being applied, however, such that the foreground mask is 
not binary, with values in between (0,1), then the center of mass becomes distinct and a 
potentially more useful measure of the center point (as viewed from C1).  
 
The problem with using the center of mass, however, is that it is highly dependent on the 
relative orientation of C1 with respect to C2. Note that as C1 approaches convergence with 
C2, the centroid converges to that desired centroid on GP/C2. On the other hand, as C1 
approaches the horizon, the centroid converges to infinity.  
 

Axis of Least Momentum: 
Just as the first order moment was used to calculate the centroid, the second order 
moments of inertia can be utilized to estimate the orientation of the object, given its point 
set. Here again, however, in practice the measurement is extremely noisy. While it 



sometimes produced acceptable results in the image, it was often off, and almost always 
vacillated about the true value on every successive frame.  
 

Minimum Oriented Bounding Box:  
 
An even simpler method of estimating properties of an object involves calculating the 
minimum oriented bounding box. The simplest bounding box is when such that its axis 
are aligned with the image axis, meaning that the corners of the bounding box are simply: 
 
Corner1 = (minX, minY), corner2 = (minX, maxY), corner3 = (maxX, minY), corner 4= 

(maxX, maxY),  
Where max/min(x/y) represent the largest or smallest value amongst all the object’s 

points.  
 
OpenCV provides a slightly more advanced algorithm which calculates the angle of 
orientation yielding the bounding box of smallest area for the object’s point set.  
 

Rendering Overhead View 

 
Figure 11: Example Overhead View depicting both the simple warping scenario where pixels C1 are 

directly mapped to C2 (colored blobs) and also the refined estimates of vehicle 
localization/orientation (grey ellipsoids/rectangles). 

 
Given the constraints previously discussed, it is at last possible to generate a synthetic 
overhead view. One can either utilize the point and its orientation to draw the object 
directly to the overhead view of C2, or one utilize the inverse homography to first draw 



the object in C1 such that when the entire image is warped from C1 to C2 via H, it is 
rendered correctly, given the assumptions on object dimensions.  
 
The first case of drawing the object directly in C2 is trivial, by applying H to bring the 
point from C1to C2 and then drawing the object relative to the known point using the 
assumed dimensions.  
 
The more complicated case of first drawing the object in C1 and then warping it to C2 
requires a bit more effort. To draw the object “correctly” in C1, it is necessary to 
essentially figure out how to draw C1 relative to the point, such that after warping, it is 
rendered with the required dimensions in C2. As an example, consider the simple case of 
an image-axis-aligned object observed in C1 with its bottom-right point, known to be on 
GP. Given the point C1, one can compute the corresponding point in C2, along with the 
point C2 – (objectWidth, objectHeight). Where (objectWidth, objectHeight) are the 
expected dimensions of a car as measured in pixels throughout C2. If the car is to be 
displayed properly after warping, then it should be drawn in C1 utilizing the points 
provided by warping (C2 – (objectWidth, objectHeight)) to C1 with H-1 . Thus, when the 
complete view of C1 is rendered in C2, the object will be appear the proper dimensions 
(avoid integer quantization issues).  
 
 
 
 
 

Drawing Objects In the Image 
 
Filling Object’s Foreground Mask  
 
Throughout the life of the project several iterations of rendering methods were developed. 
The simplest and first method of displaying identified objects’ locations was to simply 
fill in the foreground mask of each object with a random color. This provided a very 
rough approximate, but was heavily subject to the distortive problems discussed whereby 
the non-planar object’s rays were being projected onto the ground plane before being 
warped into C2 creating grossly large errors in the size of vehicles which varied inversely 
to the distance between the object and C1.  
 

Ellipse of Oriented Bounding Box 
 
The next drawing method implemented was to utilize OpenCV’s cvEllipseBox to draw an 
oriented ellipse with axis corresponding to the oriented width and height of the object. 
This method provided slightly better results.  
 



Oriented Box: 
 
The final drawing method was a simple drawing function to draw the outline of an 
oriented bounding box. Unfortunately the code does not yet fill the polygon, so when 
drawn it is difficult to see (although visible in Figure 11 within the orange blob in the 
center, for example).   
 

Estimating Object Color: 
 
Attempts were made to estimate the color of the object given all of the pixels considered 
part of its connected components set. The initial implementation simply calculated the 
average (R,G,B) value amongst all pixels in the set. Unfortunately, the result was always 
a shade of grey.  
 
The problem is several fold. First the foreground mask was far from an exact, and often 
included considerable pixels outside the actual car, which most often meant the inclusion 
of pixels corresponding to the grey pavement. Second, the car itself often contained 
considerable dark patches, especially over the windows, tires, and depending on time of 
day, from the shadow.  
 
Next, I tried a subsequent technique to both filter out extremes and “boost” the relative 
color by boosting relative differences between the (R,G,B) channels and the average grey 
examples, using a “boosting coefficient.” To filter out extremes, a pixel’s value was not 
contributed to the average unless it was within a certain threshold, in between black and 
white, in attempting to filter out both shadows and saturating highlights.  
 
For an example of color boosting, if the average grey value were 195, but the average 
values for (R,G,B) were (185, 195, 205), and the “boosting coefficient” equal to 2.0, then 
the (R,G,B) value of the object would considered (175, 195, 215), such that the difference 
between any channel’s value and the average grey value were multiplied by a factor equal 
to the boosting coefficient. Note that normalization was also applied so that average grey 
value would remain the same.  
 
Unfortunately, the color boosting method also failed. At best some objects appeared 
various shades of yellow, pink, or brown. 
 
Another method not yet implemented which may yield better results would be to utilize a 
colorspace other than RGB (YUV, for example), which in theory should separate the 
intensity of light from its wavelength. Depending on the precision of the foreground mask 
and amount of shadows, however, even this method may still fail.   



Implementation Details: 
 

Software Design 
An initial attempt was made to design a re-usable well structured library. To this end, 
most externally used libraries for video input and connected components segmentation 
were abstracted with a custom abstraction layer, so that in the future alternative libraries 
can be swapped in. For example, there is a abstract GPEVideoInput class, from which 
both DSCamVideoInput (a wrapper for the dsCam video library), and 
HighGUIFileVideoInput (a wrapper for HighGUI’s file-based video mechanisms).  
 

Development Environment: 
In the initial weeks of the project starting in mid-March, a concerted effort was made to 
utilize Eclipse IDE + CDT with MingW/GCC as the development platform of choice. 
Unfortunately, I was simultaneously also determined to find a way to capture live video 
over firewire during program execution, which required the use of an external library not 
included with OpenCV. Unfortunately the library, dsCam, utilized C++ and 
DirectX/DirectShow and was compiled with MSVC. Despite many attempts, it became 
clear that it would be impossible to utilize the library with GCC, and so it was required to 
abandon Eclipse/MingW and revert to Microsoft Visual Studio C++ 2005 Express 
Edition.  
 

Software Libraries: 
As mentioned throughout the algorithm sections, several third party libraries were 
utilized in the project, and many more evaluated during development, including 
OpenCV5, cvBlobsLib, and dsCam.  
 
By far the most important library used was OpenCV. OpenCV provided many of the 
fundamental algorithms, including the calculation of the homography and the perspective 
warping of images.  
 
While OpenCV is an extremely powerful and often highly optimized image processing 
and computer vision library, it unfortunately suffers a few limitations which significantly 
affected both this project, and many others I have worked on in the past involving video.  
 

Video Input 
OpenCV contains a hodge-podge of methods for reading in video, which vary both across 
and within Operating Systems. For Windows, there are two separate libraries: HighGUI 
and CvCAM. While it was possible to stream video over USB, neither library was able to 
access my video camera over firewire, presumably because both rely on the now ancient 
VfW (Video for Windows) API which hasn’t been updated with firewire video support. 



The quality difference between streaming the output of the same video camera over 
firewire and USB, both with respect to resolution and level of compression artifacts, was 
dramatic enough to warrant an extra investigation into video input.  
 
In addition to live video input, HighGUI is also the OpenCV recommended method of 
inputing recorded video files into OpenCV on Windows. Unfortunately, most likely again 
due to VfW, HighGUI’s video input library was extremely limited in its support. 
Virtually the only file format that worked was RAW interlaced I420 wrapped in AVI.  
There are also unconfirmed reports on many forums that some versions of AVI are 
limited to 1GB in size. When creating AVI files larger than 1 GB, it seems that some 
video encoding programs (ffmpeg) would package multiple video streams, splitting on 1 
GB boundaries. OpenCV could play the first 1 GB segment of the video, but not 
subsequent streams within the file, placing a limit on the size of pre-recorded video that 
could be used during testing. The 1 GB input limit was another reason for transcoding 
video to 320x240, such that video clips four times as long could be played.  

dsCam Library 
There are several third party libraries mentioned on the OpenCV Wiki to input video 
from cameras, including dsCam, which provides support for synchronizing and 
simultaneously reading from several cameras. Unfortunately, after several days of work, 
it was determined impossible to use the Visual Studio-compiled library with 
Eclipse+MingW. Much more important, however, about half way through the project in 
April, I realized that statically linking the library was somehow corrupting the stack, even 
when none of its functions were actually being called! It took a few weeks to figure out, 
since the program was continuously crashing while within specific functions in the 
connected components library, falsely leading me to believe that the problem was in fact 
there.  
 
  
 
 
 
 
 
 
 
 



 

Conclusion: 
 
In the end, while I did not create a program for automatically constructing Homographies 
from video, the primary goal and ambition for the project was achieved: the accurate 
generation of virtual bird’s eye views of traffic on the West Side Highway.  
 
I learned a lot through this project. Due to time constraints, I was somewhat limited in the 
number and complexity of features that I could pursue. The good news is that I now have 
a solid code base upon which to build more advanced traffic surveillance and processing 
software.   
 
Going forward, the first feature I want to add is template based matching and tracking. A 
simple tracker, comparing segmented object statistics (centroid, area, color, etc) was 
implemented and performed quite well at matching the same blob across frames, so long 
as the blob did not merge with blobs of other vehicles. During testing, however, it was 
found that occlusions from clumps of adjacent vehicles posed significant problems, and 
would require a more advanced tracker with ability to handle partial occlusions.  
 
Once I have a module capable of efficiently extracting templates and matching, my hope 
is to utilize the many hours of input footage to train Viola and Jones style feature part 
detectors for both different types and sub features of cars, which going forward can be 
used to handle occlusions, and improve the background/foreground segmentation 
modules. Lastly, given the extremely predictable linear motion that governs most cars, 
applying Kalman filtering to predict objects in subsequent frames is expected to yield 
worthwhile results.  
 



Bibliography 
 
                                                 
1 Multiple View Geometry, 2nd Edition. Richard Hartely and Andrew Zisserman. Cambridge press.  
2 KaewTraKulPong and Bowden. “"An Improved Adaptive Background Mixture Model for Real-time 
Tracking and Shadow Detection." Provided with OpenCV v1.0 in cvbgfg_gaussmix.cpp 
3 cvBlobsLib. http://opencvlibrary.sourceforge.net/cvBlobsLib  
4 Snyder, W. Cowart, A. “An Iterative Approach to Region Growing.” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 1983.  
5 OpenCV v1.0. Intel Corporation. http://sourceforge.net/projects/opencvlibrary/  

http://opencvlibrary.sourceforge.net/cvBlobsLib
http://sourceforge.net/projects/opencvlibrary/

	 Introduction
	 Notation
	 Mathematical Background: 
	General Case: Plane to Plane Mapping via Homography
	Computation of Homography:

	 Mathematical Requirements for View Synthesis
	Simple View Synthesis
	Object Constraints:
	Equivalence of Gp and C2 under Orthography:



	Overview of Video Processing Algorithms:
	 Video Capture:
	 Background-Foreground Segmentation:
	 Connected Components Object Segmentation:
	 Vehicle Localization
	Moments of Inertia
	Center of Mass:
	Axis of Least Momentum:

	Minimum Oriented Bounding Box: 


	Rendering Overhead View
	Ellipse of Oriented Bounding Box
	Oriented Box:



	 Implementation Details:
	Software Design
	Development Environment:
	Software Libraries:
	dsCam Library


	Conclusion:

