

COMS 4701 Artificial Intelligence
Final Project Report

Applications of Machine Learning to Facial Recognition

in Video

David Lariviere
dal2103@columbia.edu

John Petrella

jep2124@columbia.edu

Jian Pan
jp2472@columbia.edu

ABSTRACT

Facial Recognition remains one of the most popular fields in computer imaging research
due to its broad scope of applications in identity verification, human computer
interactions, law enforcement applications and video surveillance systems. Although
numerous artificial intelligence and machine learning techniques have been successfully
applied to still image recognitions, recognition in video streams remains a difficult task
due to the changing conditions present in the video data, such as lighting, pose, and
image motion. This paper describes an application to solve the above problem with
automatic image selection and normalization from video streams using OpenCV, and
conducting recognition through training and testing using Machine Learning library
WEKA.

mailto:dal2103@columbia.edu
mailto:jep2124@columbia.edu

1. Problem

Although seemingly obvious for the human eye, facial recognition remains a difficult yet
desirable task for computer scientists. Over the past twenty years, advancements in
various fields such as neuroscience, cognitive science, statistics, artificial intelligence,
machine learning, computer vision and imaging have all contributed to the field. Due to
its nature, facial recognition has been difficult to realize because apart from a human who
can describe facial features, computers require a set of quantified features from which to
identify, classify and further learn about different faces.

In recent years, several advancements in theory and techniques have appeared to address
or overcome many of the important issues perplexing researchers in the field. Namely,
face detection in complex backgrounds through neural-network based system [Rowley,
Baluja and Kanade, 1998] and sample-learning based system [Colmenarez and Huang,
1997], the feature extraction of facial images through global descriptions based on
Eigenface, KL expansion [Turk, Pentland, 1994] and local descriptors such as nose, eyes,
hair regions.

Although these methods have applied successfully to facial recognition in still images,
facial recognition in sequential images (video streams) remains to be a difficult task due
to several factors such as: low quality of image extracted from video, constant lighting
condition change, pose difference (head turning), object motion (sideway moving, face
image overlapping) and changes in sizing (close up and backing off). It is thus a
demanding task to find a technique to effectively normalize all these affecting conditions
in video derived images before and then send them into the existing framework of still
image facial recognition.

Most recent work [Viola and Jones, 2003] have introduced new techniques combined
with machine learning algorithms in order to quickly locate faces within images. They
introduced a new midlevel representation for images, the integral image, which allowed
significantly faster image processing at varying scales over previous techniques. In order
to satisfy the requirements of real time processing, they utilized a customized variant of
Adaboost, in which “cascaded” classifiers were used. Various decision stumps were
applied in order of priority, such that regions that were highly unlikely to correspond to
faces were immediately rejected before being further processed. Only those regions that
initially seemed promising were processed further. As mentioned in their paper, utilizing
38 classifiers required over 80,000 operations to classify, whereas utilizing the classifiers
resulted in only 270 operations, on average, per sub-window.

2. Implementation Overview

To address the facial recognition problem for video streams, we constructed our system
based on two connected functional modules: The first module implemented as a C
Dynamic Link library, utilizing Intel’s OpenCV library, processes image data from live
video stream feeds, identifies and segments face regions within the image, matches
Captured Face Template (CFT) with Stored Face Template (SFT), does automatic
resizing for CFT to maximize the correlation, filters overlapping recognized templates,
and at last sends normalized CFT as output to data trainer; The second module
implemented in Java code, using the WEKA machine learning library, acts as the data

trainer, which accepts image data input from the first module, in order to train or test the
data and return a classification rate showing who in the image has been identified. The
main program calling these modules is written in Java, providing a graphical user
interface with which the user can see the live calculation data output, and the
identification result integrated with the video stream.

High-level Overview

FaceRecLib.dll: Image Processing and Face Locating Module

 Face region segmentation function: before each training session for face recognition
starts, the user will select (by drawing a square box) a face image from the video
stream and store it as the Stored Face Template (SFT). In subsequent capturing
phases, captured images are first turned into gray scale, for each input image from the
video stream, the program select every sub-region within the input image in equal
size to SFT, and subtract it with the SFT, if the error is below a certain threshold, it’s
then identified as a face region and also a match with the SFT.

 Captured Face Template (CFT) resizing function: in cases where the faces in the
testing input image is closer or further to the camera compared to the training data,
the face region in the testing images maybe substantially bigger or smaller than the
SFT. Therefore the face finding module will iterate through different resized
templates in order to maximize the match. Without doing thus, the face finder would
likely lose the face being tracked once it surpassed a certain size.

 Template size search pruning using Markovian characteristics: in order to
effectively iterate through the possible template sizes without doing drastically
increasing the computational cost, we utilized a first order Markov assumption with
respect to the best scale of the template in sequential video frames images, that is, the
face image from the next frame will not differ significantly in size from the image in
the previous frame. Given that, even if the people in the image are fast approaching
the camera or quickly backing off, the application can adjust the template size
dynamically, while only trying a few other sizes slightly larger and smaller than the
size used before.

 Pruning Overlapping Matches:: the application can effectively separate and capture
multiple faces within the same image. However, overlapping issues must be
considered when two people begin to move closer to each other and eventually their
faces overlap somewhat. Also, there is the possibility that there are more templates in
the system being searched for than there are people in the current scene, allowing fro
the possibility that a person is matched by more than one template---in these cases,
the system must select which face to extract and consider a match. In our application,
we implemented a judging mechanism, keeping both templates for both faces if
overlap does not occur. If an overlap does occur, then the face that is matched the best
is chosen. Implementation of this function makes our application robust against
overlapping situations, either due to fewer people in the scene than tracked templates,
or to overlap of individuals.

 Image normalization function: because lighting conditions may change for different
test data, we try to normalize our image according to different backgrounds and
lighting conditions to be resilient to such lighting condition changes.

Java Program:

 FaceRec: The primary class responsible for handling events and connecting all of the
other modules (both java and C-based) together.

 Wekacaller: The primary goal of our application was to generate a system capable of
operating on real time video streams. As such, the wekacaller class was implemented
in order to interface with the WEKA APIs in order to train and test various machine
learning algorithms within the program, rather than have to resort to other external
software.

 ARFFWriter: In the case where one wants to perform extensive testing and analysis
of different machine learning algorithms, on the fly classification using the WEKA
APIs is not desired.

Functional Overview

Template Matching:

 Locating a desired template (small subimage) within another image is a common
task in computer vision. Numerous methods exist. One of the simplest, known as Sum of
Squares (SSD), involves calculating the difference between the template and the image.
To do so, one places the template in the top left corner of the image, and then subtracts
the template value for each pixel from the current image’s value. Adding up all of these
errors provides the value of the match for the top left most pixel. By shifting the template
to the right, and performing the same calculation, one calculates the SSD for the next
pixel. Continuing this process for all pixels (except for those near the borders where the
entire template would not lie above actual image pixels) provides a two dimensional
function over the area of the image. Finding the pixel with the lowest value (in the case of
SSD) is equivocal to finding the part of the image that best matches the template.
OpenCV provides two functions, cvMatchTemplate and cvMinMaxLoc, for calculating
and locating the best match for a template within another image. This information is then
used by the FaceRecLib for all of the more advanced processing and normalization.

 In order for WEKA to correctly classify the image data representing the faces, it
was necessary to normalize the data. For this reason the resizing of templates was
introduced in order to first locate the best scale of the template which matches the current
image. Then the portions of the current frame which best match the templates are
extracted, resized to 32x32 pixel images, and then sent to the java module for processing
by WEKA. Without the introduction of the resizing algorithm, if a person were to move
twice as close to the camera, the template extracted for WEKA (assuming a match could
even been found at all), would have only the center of their enlarged face, little
resembling the original template. By introducing the adaptive scaling, the extracted faces
are of much more consistent size than otherwise would’ve been the case.

User Interface:

The user first uses single left-click and drags to trace out rectangles on the video stream
in order to extract the desired templates. Then the underlying face recognition algorithms
will locate the templates in subsequent frames and mark them with crosshairs. The
window which displays the live video stream has two scrollbars (MaxError and
MaxScale). MaxError refers to the maximum difference (normalized per pixel) between
the template and the best match which will still be considered a true match. MaxScale
corresponds to the maximum allowed difference in scale between the original template
and resized versions that will be allowed. This was added to prevent the face finding
algorithm from constantly shrinking the template which results in increasingly better
matches which correspond to very few pixels and a poor match. Lastly, since the
OpenCV-based GUI tools used on the C side of the module do not support floating value
trackbars, an integer bar of 0-10 is used for max scale, where 8 corresponds to 10-8=2,
referring to +/- 20% scale difference allowed.

Original Template

Live Video
Stream

SSD Match Error for
Current Frame

of Samples Collected for
Training/Testing

Current Match

Control Buttons

3. Results
Machine Learning with WEKA:
 Using the previously described software solution, hundreds of templates,
representing 3 separate individuals were extracted from a video stream, labeled, and
written to an ARFF file for a thorough analysis using various machine learning
algorithms utilizing the WEKA Experimenter.

3.1 Nominal versus Integer Attributes

 The first set of experiments was designed to compare representing pixel values as
nominal versus integers attribute data types, as defined by the WEKA ARFF file format.
Nominal attributes were defined as having a value from the set (0,1,…,254,255), whereas
integer attributes were simply labeled as INTEGER. Treating pixel values as part of a set
of nominal attributes corresponds to a scenario with absolutely no noise, in which pixel
values of the same static point in space are expected to remain constant, given constant
illumination. For the evaluation, four machine learning algorithms were selected:
AdaBoost (utilizing Decision Stumps), Bagging (utilizing REPTrees), Random Forest,
and C4.5. The results are presented below:

 Nominal Attribute Integer Attribute
Algorithm Average STD Average STD
AdaBoost (Decision
Stumps) 45.15 1.36 99.54 0.3
Bagging (Reptree) 98.4 1.05 99.66 0.7
Random Forest 99.58 0.33 99.16 0.92
J48 (C4.5) 92.24 2.51 99.62 0.31

0

10

20
30

40

50

60

70
80

90

100

AdaBoost
(Decision Stumps)

Bagging (Reptree) Random Forest J48 (C4.5)

Pe
rc

en
t C

or
re

ct

Nominal
Integer

 For three of the four algorithms evaluated, a modest but noticeable improvement
is observed when using integer-valued pixel attributes. For Adaboost, however, a drastic
difference existed. Adaboost performed horribly when using nominal attributes. Even
after accounting for the standard deviation, the classifier produced by Adaboost actually
performed worse than purely random guessing. When utilizing integer attributes,

however, Adaboost worked as well as the other three algorithms. The explanation is most
likely the general sensitivity of boosting algorithms, like Adaboost, to noise. By utilizing
nominal attributes, a pixel value changing from 127 to 128 is as significant as a pixel
changing from 127 to 255. In other words, the underlying algorithms have no intuition
that pixel brightness of 128 is much closer to 127 than 255. In the presence of noise, in
which pixel values fluctuate slightly, the boosting algorithms are therefore quite
susceptible to the noise and perform quite poorly. For subsequent tests, pixel values were
treated as INTEGER type values.

3.2 Area of Face Extracted

The second set of tests was designed to compare the
performance of machine learning algorithms on data in
which only the center of the face was present versus
having the entire head and some of the background
visible. For the purposes of normalization, square
templates were always used. The human face being an
oval, however, created the problem of choosing between
extracting a larger template, in order to enclose the entire
face, versus extracting a smaller template, and thereby
losing some portions of the face (hair and jaw). Also note
that all image data, before being processed by WEKA, is
normalized to 32x32 pixel images. The same learning
algorithms as before were applied to two datasets
containing templates similar to the images displayed to
the right. The results of the comparison are presented below:

vs

 Small templates Large Templates
AdaBoost (Decision
Stumps) 99.8 0.39 99.54 0.3
Bagging (Reptree) 99.83 0.32 99.66 0.7
Random Forest 100 0 99.16 0.92
J48 (C4.5) 99 3.14 99.62 0.31

Comparison of Template Sizes

98.4
98.6
98.8

99
99.2
99.4
99.6
99.8
100

AdaBoost
(Decision
Stumps)

Bagging
(Reptree)

Random
Forest

J48 (C4.5)

Pe
rc

en
t C

or
re

ct

Small Templates
Large Templates

Comparison of Template Sizes

0

0.5

1

1.5

2

2.5

3

3.5

AdaBoost
(Decision
Stumps)

Bagging
(Reptree)

Random
Forest

J48 (C4.5)

V
ar

ia
nc

e
in

 E
rr

or

Small Templates
Large Templates

Comparison of % Correct Classification/Standard Deviation

An initial view of the percent correct classification reveals that with three of the four
machine learning classifiers, smaller templates were superior, with the exception of C4.5.
The tables and graphs presented above, however, due not contain the complete results
from the 10-fold by 10-run cross validation, which were excluded due to their length. As
seen from second chart above, graphing the variance in error, C4.5 has a significantly

higher variance than all of the others. Upon closer examination of the full cross-
validation results, it was observed that the lower scoring and increased variance of C4.5
was almost entirely the result of a single fold among the 10 selected for cross validation.
The vast majority of classifications for each fold in each run were 100% correct
classification. In every run, however, the ninth fold was classified correctly 90.91% of
the time. The only other value contributing to C4.5’s error rate and variance was 2nd run’s
classification of the sixth fold, with a success rate of 81.82%. In short, virtually all of the
errors were the result of a single data fold.

With the error result in C4.5 explained, it is now clear that utilizing templates which

focus on a smaller region of the face appear to perform better than larger templates. The
result intuitively makes sense. In general, the significant features that tend to differentiate
people are clustered near the center of the face, not on the boundaries. Further, heavy
utilization of features on the periphery of the face would likely reduce results on a larger
data set, because these portions of the face are more likely to change (hairstyles, motion
of the jaw while talking, etc).

3.3 Varying Algorithm’s Parameters

The final set of experiments was intended to examine the impact of varying some of
the machine learning algorithm’s parameters: namely the number of iterations and
underlying classifier, in the case of Adaboost, and the number of trees, in the case of
random forest.

The results for 10, 50, and 100 iterations for Adaboost (using Decision Stumps) are

tabulated below:

Adaboost Average
Std.
Dev

10 iterations 99.57 0.82
50 iterations 99.66 0.75
100 iterations 99.66 0.75

Based on the results, it is clear that increasing the number of iterations beyond 10
improves the correct classification. There was no gain in using 100 over 50 iterations,
suggesting that the best value is fifty or less.

 Changing the number of forests had no effect on Random Forest; using either 10
or 100 trees resulted in 100% correct classification. Lastly, changing the underlying
classifier for Adaboost to Random Forest gave the same 100% correct classification
result.

4. Discussion

A face tracking library was implemented designed to track multiple faces in an image,
adapting to changing sizes and positions within the image. The implemented algorithms
worked relatively well, capable of tracking three individuals for a period of more than 2
minutes, including when the individuals rotated and turned their heads, altered facial
expressions, swapped positions thus temporarily overlapping, and moving forward and
backwards with respect to the camera, thus changing their perceived size. The module
was able to provide normalized consistent data susceptible to meaningful processing by
WEKA.

With data in hand, a series of machine learning algorithms were applied using
different methods of data classification, template sizes, and alternative parameters.
Through experimentation, it has been found that using integer pixel values of small sized
templates enclosing the face with Random Forest clearly produces the best classifier for
the case of differentiating between the three individuals.

5. Future work

Numerous other algorithms and methods were considered, but due to time constraints
were not yet implemented. The work of Viola and Jones seemed most promising, but
due to its need for a custom implementation of cascaded Adaboost, it could not be
entirely replicated. Based on our results with Random Forests, however, we believe
that an extension of Viola and Jones would likely benefit from using Random Forests
as the underlying classifier for Adaboost, as opposed to Decision stumps. In order to
maintain similar processing speeds, however, it is likely that the initial Forests used
consist of relatively short trees.

In the realm of face extraction from a video stream where the same face is being
tracked, rather than just located, additional AI algorithms would likely increase the
tracking rate. Kalman filtering, traditionally used in tracking of objects overtime
based on their previous path and sensory input from Gaussian-noise effected sensors,
would likely improve the template tracking. More specifically, one could use the
probability map for the face’s location in the next frame as a weight factor with which
to scale the values calculated from the SSD, thus tipping the scale between similar
matches towards those near the face’s previous known location. Further, the usage of
extracting multiple templates, as well as extracting the previous matches to use as
additional templates is predicted to likely improve tracking significantly.

Reference:

W. Zhao, R. Chellappa, A. Rosenfeld, P.J. Phillips, Face Recognition: A Literature
Survey, ACM Computing Surveys, 2003, pp. 399-458

Turk, M. A. & Pentland, A. P. (1991). Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3(1), 71-86.

K. Sung and T. Poggio, “Example-based Learning for View-based Human Face
Detection,” A.I. Memo 1521, MIT A.I. Laboratory, 1994

T.K. Leung, M.C. Burl, and P. Perona, “Finding Faces in Cluttered Scene using Random
Labeled Graph Matching,” in Proceedings, International Conference on Computer Vision,
pp. 637 – 644, 1995

P. Viola and M. Jones, “Robust Real-Time Face Detection.” International Journal of
Computer Vision, 2004.

